# 826 Static Off Antistatic Foaming Spray MG Chemicals UK Limited Version No: A-2.00 Safety data sheet according to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758 Issue Date: 30/03/2022 Revision Date: 30/03/2022 L.REACH.GB.EN ## SECTION 1 Identification of the substance / mixture and of the company / undertaking #### 1.1. Product Identifier | Product name | 826 | | |-------------------------------|-----------------------------------------------------------|--| | Synonyms | SDS Code: 826-Aerosol; 826-450G UFI:XYD0-90V3-G00T-9PF5 | | | Other means of identification | Static Off Antistatic Foaming Spray | | #### 1.2. Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | antistatic spray | |--------------------------|------------------| | Uses advised against | Not Applicable | #### 1.3. Details of the supplier of the safety data sheet | Registered company name | MG Chemicals UK Limited | MG Chemicals (Head office) | |-------------------------|-----------------------------------------------------------------------|---------------------------------------------| | Address | Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Kingdom | 1210 Corporate Drive Ontario L7L 5R6 Canada | | Telephone | +(44) 1663 362888 | +(1) 800-340-0772 | | Fax | Not Available | +(1) 800-340-0773 | | Website | Not Available | www.mgchemicals.com | | Email | sales@mgchemicals.com | Info@mgchemicals.com | #### 1.4. Emergency telephone number | Association / Organisation | Verisk 3E (Access code: 335388) | | |-----------------------------------|---------------------------------|--| | Emergency telephone numbers | +(44) 20 35147487 | | | Other emergency telephone numbers | +(0) 800 680 0425 | | #### **SECTION 2 Hazards identification** #### 2.1. Classification of the substance or mixture | Classified according to<br>GB-CLP Regulation, UK SI<br>2019/720 and UK SI 2020/1567<br>[1] | H229 - Aerosols Category 3 | |--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------| | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567 | #### 2.2. Label elements | Hazard pictogram(s) | Not Applicable | |---------------------|----------------| | Signal word | Warning | | J.g | ag | #### Hazard statement(s | nazaru statement(s) | | | | | |---------------------|---------------------------------------------|--|--|--| | H229 | Pressurised container: May burst if heated. | | | | #### Supplementary statement(s) Not Applicable #### Precautionary statement(s) Prevention | P210 | Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | |------|------------------------------------------------------------------------------------------------| | P251 | Do not pierce or burn, even after use. | # Precautionary statement(s) Response #### Precautionary statement(s) Storage P410+P412 Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F. #### Precautionary statement(s) Disposal Not Applicable #### 2.3. Other hazards Inhalation may produce health damage\*. Cumulative effects may result following exposure\*. May produce discomfort of the respiratory system\*. Limited evidence of a carcinogenic effect\*. May be harmful to the foetus/ embryo\*. May possibly affect fertility\*. #### **SECTION 3 Composition / information on ingredients** #### 3.1.Substances See 'Composition on ingredients' in Section 3.2 #### 3.2.Mixtures | 1.CAS No<br>2.EC No<br>3.Index No<br>4.REACH No | %[weight] | Name | Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567 | SCL /<br>M-Factor | Nanoform Particle<br>Characteristics | |----------------------------------------------------------------------------|-----------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------| | 1.7732-18-5<br>2.231-791-2<br>3.Not Available<br>4.Not Available | 90 | water | Not Applicable | Not<br>Available | Not Available | | 1.75-28-5<br>2.200-857-2<br>3.601-004-00-0 601-004-01-8<br>4.Not Available | 4 | iso-butane | Flammable Gases Category 1A, Gases Under Pressure (Liquefied Gas); H220, H280 <sup>[1]</sup> | Not<br>Available | Not Available | | 1.67-63-0<br>2.200-661-7<br>3.603-117-00-0<br>4.Not Available | 3 | isopropanol | Flammable Liquids Category 2, Serious Eye Damage/Eye Irritation Category 2, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3; H225, H319, H336 [2] | Not<br>Available | Not Available | | 1.111-76-2<br>2.203-905-0<br>3.603-014-00-0<br>4.Not Available | 2 | ethylene glycol<br>monobutyl ether<br>* | Acute Toxicity (Oral) Category 4, Acute Toxicity (Dermal) Category 4, Acute Toxicity (Inhalation) Category 4, Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2; H302, H312, H332, H315, H319 [2] | Not<br>Available | Not Available | | 1.74-98-6<br>2.200-827-9<br>3.601-003-00-5<br>4.Not Available | 1 | propane | Flammable Gases Category 1, Gases Under Pressure; H220, H280 [2] | Not<br>Available | Not Available | #### \_ogo.. 1. Classified by Chemwatch; 2. Classification drawn from GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567; 3. Classification drawn from C&L; \* EU IOELVs available; [e] Substance identified as having endocrine disrupting properties #### **SECTION 4 First aid measures** ## 4.1. Description of first aid measures **Skin Contact** If aerosols come in contact with the eyes: - Immediately hold the eyelids apart and flush the eye with fresh running water. - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. - Seek medical attention without delay; if pain persists or recurs seek medical attention. - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. #### In case of cold burns (frost-bite): - Move casualty into warmth before thawing the affected part; if feet are affected carry if possible - Bathe the affected area immediately in luke-warm water (not more than 35 deg C) for 10 to 15 minutes, immersing if possible and without rubbing - DO NOT apply hot water or radiant heat. - ► Apply a clean, dry, light dressing of 'fluffed-up' dry gauze bandage - If a limb is involved, raise and support this to reduce swelling - If an adult is involved and where intense pain occurs provide pain killers such as paracetomol - ► Transport to hospital, or doctor - ▶ Subsequent blackening of the exposed tissue indicates potential of necrosis, which may require amputation. If solids or aerosol mists are deposited upon the skin: - Flush skin and hair with running water (and soap if available). - Remove any adhering solids with industrial skin cleansing cream. - DO NOT use solvents. - Seek medical attention in the event of irritation. | Inhalation | If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. | |------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Ingestion | ▶ Not considered a normal route of entry. | #### 4.2 Most important symptoms and effects, both acute and delayed See Section 11 #### 4.3. Indication of any immediate medical attention and special treatment needed Treat symptomatically. For acute or short term repeated exposures to ethylene glycol: - ▶ Early treatment of ingestion is important. Ensure emesis is satisfactory. - ► Test and correct for metabolic acidosis and hypocalcaemia. - Apply sustained diuresis when possible with hypertonic mannitol. - ▶ Evaluate renal status and begin haemodialysis if indicated. [I.L.O] - Papid absorption is an indication that emesis or lavage is effective only in the first few hours. Cathartics and charcoal are generally not effective. - Correct acidosis, fluid/electrolyte balance and respiratory depression in the usual manner. Systemic acidosis (below 7.2) can be treated with intravenous sodium bicarbonate solution. - ▶ Ethanol therapy prolongs the half-life of ethylene glycol and reduces the formation of toxic metabolites. - Pyridoxine and thiamine are cofactors for ethylene glycol metabolism and should be given (50 to 100 mg respectively) intramuscularly, four times per day for 2 days. - Magnesium is also a cofactor and should be replenished. The status of 4-methylpyrazole, in the treatment regime, is still uncertain. For clearance of the material and its metabolites, haemodialysis is much superior to peritoneal dialysis. [Ellenhorn and Barceloux: Medical Toxicology] It has been suggested that there is a need for establishing a new biological exposure limit before a workshift that is clearly below 100 mmol ethoxy-acetic acids per mole creatinine in morning urine of people occupationally exposed to ethylene glycol ethers. This arises from the finding that an increase in urinary stones may be associated with such exposures. Laitinen J., et al: Occupational & Environmental Medicine 1996; 53, 595-600 #### **SECTION 5 Firefighting measures** #### 5.1. Extinguishing media #### SMALL FIRE: ▶ Water spray, dry chemical or CO2 #### LARGE FIRE: Water spray or fog. The product contains a substantial proportion of water, therefore there are no restrictions on the type of extinguishing media which may be used. Choice of extinguishing media should take into account surrounding areas. Though the material is non-combustible, evaporation of water from the mixture, caused by the heat of nearby fire, may produce floating layers of combustible substances. In such an event consider: - n such an • foam. - dry chemical powder. - carbon dioxide. #### 5.2. Special hazards arising from the substrate or mixture | Fire Incompatibility | Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result | |---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------| | F.O. Address from Constitutions | | #### 5.3. Advice for firefighters # GENERAL #### ..... - Alert Fire Brigade and tell them location and nature of hazard. - Wear full body protective clothing with breathing apparatus. - Fight fire from a safe distance, with adequate cover. - If safe, switch off electrical equipment until vapour fire hazard removed. - ▶ Use water delivered as a fine spray to control fire and cool adjacent area. - DO NOT approach cylinders suspected to be hot. Cool fire exposed cylinders with water spray from a protected location. - If safe to do so, remove cylinders from path of fire. - Equipment should be thoroughly decontaminated after use. #### Fire Fighting - Excessive pressures may develop in a gas cylinder exposed in a fire; this may result in explosion. - Cylinders with pressure relief devices may release their contents as a result of fire and the released gas may constitute a further source of hazard for the fire-fighter. - P Cylinders without pressure-relief valves have no provision for controlled release and are therefore more likely to explode if exposed to fire. #### FIRE FIGHTING REQUIREMENTS: FIRE FIGHTING PROCEDURES: - Positive pressure, self-contained breathing apparatus is required for fire-fighting of hazardous materials. - Full structural fire-fighting (bunker) gear is the minimum acceptable attire. - The need for proximity, entry and special protective clothing should be determined for each incident, by a competent fire-fighting safety professional. - Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves in the event of a fire. - ▶ Prevent, by any means available, spillage from entering drains or water courses. - Use fire fighting procedures suitable for surrounding area. | | <ul> <li>DO NOT approach containers suspected to be hot.</li> <li>Cool fire exposed containers with water spray from a protected location.</li> <li>If safe to do so, remove containers from path of fire.</li> <li>Equipment should be thoroughly decontaminated after use.</li> </ul> | |-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Fire/Explosion Hazard | <ul> <li>Containers may explode when heated - Ruptured cylinders may rocket</li> <li>May burn but does not ignite easily.</li> <li>Fire exposed cylinders may vent contents through pressure relief devices thereby increasing vapour concentration</li> <li>Fire may produce irritating, poisonous or corrosive gases.</li> <li>Runoff may create fire or explosion hazard.</li> <li>May decompose explosively when heated or involved in fire.</li> <li>Contact with gas may cause burns, severe injury and/ or frostbite.</li> <li>POISONOUS: MAY BE FATAL IF INHALED, SWALLOWED OR ABSORBED THROUGH SKIN</li> <li>Decomposition may produce toxic fumes of: carbon monoxide (CO)</li> <li>carbon dioxide (CO2)</li> <li>other pyrolysis products typical of burning organic material.</li> <li>Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.</li> <li>WARNING: Aerosol containers may present pressure related hazards.</li> </ul> | ## **SECTION 6 Accidental release measures** #### 6.1. Personal precautions, protective equipment and emergency procedures See section 8 ## 6.2. Environmental precautions See section 12 | 6.3. Methods and material for o | containment and cleaning up | |---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Minor Spills | <ul> <li>Clean up all spills immediately.</li> <li>Avoid breathing vapours and contact with skin and eyes.</li> <li>Wear protective clothing, impervious gloves and safety glasses.</li> <li>Shut off all possible sources of ignition and increase ventilation.</li> <li>Wipe up.</li> <li>If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated.</li> <li>Undamaged cans should be gathered and stowed safely.</li> <li>Clean up all spills immediately.</li> <li>Avoid breathing vapours and contact with skin and eyes.</li> <li>Control personal contact with the substance, by using protective equipment.</li> <li>Contain and absorb spill with sand, earth, inert material or vermiculite.</li> <li>Wipe up.</li> <li>Place in a suitable, labelled container for waste disposal.</li> </ul> | | Major Spills | Clear area of all unprotected personnel and move upwind. Alert Emergency Authority and advise them of the location and nature of hazard. Wear full body clothing with breathing apparatus. Prevent by any means available, spillage from entering drains and water-courses. Consider evacuation. Increase ventilation. No smoking or naked lights within area. Stop leak only if safe to so do. Water spray or fog may be used to disperse vapour. DO NOT enter confined space where gas may have collected. Keep area clear until gas has dispersed. Remove leaking cylinders to a safe place. Fit vent pipes. Release pressure under safe, controlled conditions Burn issuing gas at vent pipes. DO NOT exert excessive pressure on valve; DO NOT attempt to operate damaged valve. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Absorb or cover spill with sand, earth, inert materials or vermiculite. If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely. Collect residues and seal in labelled drums for disposal. | #### 6.4. Reference to other sections Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 Handling and storage** ## 7.1. Precautions for safe handling #### Safe handling - ▶ Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. | | Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. Avoid smoking, naked lights or ignition sources. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. DO NOT incinerate or puncture aerosol cans. DO NOT spray directly on humans, exposed food or food utensils. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. | |-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Fire and explosion protection | See section 5 | | Other information | <ul> <li>Cylinders should be stored in a purpose-built compound with good ventilation, preferably in the open.</li> <li>Such compounds should be sited and built in accordance with statutory requirements.</li> <li>The storage compound should be kept clear and access restricted to authorised personnel only.</li> <li>Cylinders stored in the open should be protected against rust and extremes of weather.</li> <li>Cylinders in storage should be properly secured to prevent toppling or rolling.</li> <li>Cylinder valves should be closed when not in use.</li> <li>Where cylinders are fitted with valve protection this should be in place and properly secured.</li> <li>Gas cylinders should be segregated according to the requirements of the Dangerous Goods Act.</li> <li>Preferably store full and empty cylinders separately.</li> <li>Check storage areas for hazardous concentrations of gases prior to entry.</li> <li>Full cylinders should be arranged so that the oldest stock is used first.</li> <li>Cylinders in storage should be checked periodically for general condition and leakage.</li> <li>Protect cylinders against physical damage. Move and store cylinders correctly as instructed for their manual handling.</li> <li>NOTE: A 'G' size cylinder is usually too heavy for an inexperienced operator to raise or lower.</li> </ul> | # 7.2. Conditions for safe storage, including any incompatibilities | Suitable container | Aerosol dispenser. Check that containers are clearly labelled. | |-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Storage incompatibility | <ul> <li>Compressed gases may contain a large amount of kinetic energy over and above that potentially available from the energy of reaction produced by the gas in chemical reaction with other substances</li> <li>Avoid reaction with oxidising agents</li> </ul> | # 7.3. Specific end use(s) See section 1.2 # SECTION 8 Exposure controls / personal protection #### 8.1. Control parameters | Ingredient | DNELs<br>Exposure Pattern Worker | PNECs<br>Compartment | | |---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | isopropanol | Dermal 888 mg/kg bw/day (Systemic, Chronic) Inhalation 500 mg/m³ (Systemic, Chronic) Dermal 319 mg/kg bw/day (Systemic, Chronic) * Inhalation 89 mg/m³ (Systemic, Chronic) * Oral 26 mg/kg bw/day (Systemic, Chronic) * | 140.9 mg/L (Water (Fresh)) 140.9 mg/L (Water - Intermittent release) 140.9 mg/L (Water (Marine)) 552 mg/kg sediment dw (Sediment (Fresh Water)) 552 mg/kg sediment dw (Sediment (Marine)) 28 mg/kg soil dw (Soil) 2251 mg/L (STP) 160 mg/kg food (Oral) | | | ethylene glycol monobutyl ether | Dermal 125 mg/kg bw/day (Systemic, Chronic) Inhalation 98 mg/m³ (Systemic, Chronic) Dermal 89 mg/kg bw/day (Systemic, Acute) Inhalation 1 091 mg/m³ (Systemic, Acute) Inhalation 246 mg/m³ (Local, Acute) Dermal 75 mg/kg bw/day (Systemic, Chronic) * Inhalation 59 mg/m³ (Systemic, Chronic) * Oral 6.3 mg/kg bw/day (Systemic, Chronic) * Dermal 89 mg/kg bw/day (Systemic, Acute) * Inhalation 426 mg/m³ (Systemic, Acute) * Oral 26.7 mg/kg bw/day (Systemic, Acute) * Inhalation 147 mg/m³ (Local, Acute) * | 8.8 mg/L (Water (Fresh)) 0.88 mg/L (Water - Intermittent release) 26.4 mg/L (Water (Marine)) 34.6 mg/kg sediment dw (Sediment (Fresh Water)) 3.46 mg/kg sediment dw (Sediment (Marine)) 2.33 mg/kg soil dw (Soil) 463 mg/L (STP) 0.02 g/kg food (Oral) | | <sup>\*</sup> Values for General Population ## Occupational Exposure Limits (OEL) # INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |--------------------------------------------------------------------------------------|---------------------------------|-----------------|---------------------|----------------------|---------------|---------------| | UK Workplace Exposure Limits (WELs) | isopropanol | Propan-2-ol | 400 ppm / 999 mg/m3 | 1250 mg/m3 / 500 ppm | Not Available | Not Available | | EU Consolidated List of<br>Indicative Occupational<br>Exposure Limit Values (IOELVs) | ethylene glycol monobutyl ether | 2-Butoxyethanol | 20 ppm / 98 mg/m3 | 246 mg/m3 / 50 ppm | Not Available | Skin | | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |-------------------------------------|---------------------------------|-----------------|--------------------|--------------------|---------------|----------| | UK Workplace Exposure Limits (WELs) | ethylene glycol monobutyl ether | 2-Butoxyethanol | 25 ppm / 123 mg/m3 | 246 mg/m3 / 50 ppm | Not Available | Sk, BMGV | #### Emergency Limits | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |---------------------------------|---------------|---------------|---------------| | iso-butane | 5500* ppm | 17000** ppm | 53000*** ppm | | isopropanol | 400 ppm | 2000* ppm | 12000** ppm | | ethylene glycol monobutyl ether | 60 ppm | 120 ppm | 700 ppm | | propane | Not Available | Not Available | Not Available | | Ingredient | Original IDLH | Revised IDLH | |---------------------------------|---------------|---------------| | water | Not Available | Not Available | | iso-butane | Not Available | Not Available | | isopropanol | 2,000 ppm | Not Available | | ethylene glycol monobutyl ether | 700 ppm | Not Available | | propane | 2,100 ppm | Not Available | #### MATERIAL DATA These exposure guidelines have been derived from a screening level of risk assessment and should not be construed as unequivocally safe limits. ORGS represent an 8-hour time-weighted average unless specified otherwise. CR = Cancer Risk/10000; UF = Uncertainty factor: TLV believed to be adequate to protect reproductive health: LOD: Limit of detection Toxic endpoints have also been identified as: D = Developmental; R = Reproductive; TC = Transplacental carcinogen Jankovic J., Drake F.: A Screening Method for Occupational Reproductive American Industrial Hygiene Association Journal 57: 641-649 (1996) Exposed individuals are NOT reasonably expected to be warned, by smell, that the Exposure Standard is being exceeded. Odour Safety Factor (OSF) is determined to fall into either Class C, D or E. The Odour Safety Factor (OSF) is defined as: OSF= Exposure Standard (TWA) ppm/ Odour Threshold Value (OTV) ppm Classification into classes follows: ClassOSF Description A 550 Over 90% of exposed individuals are aware by smell that the Exposure Standard (TLV-TWA for example) is being reached, even when distracted by working activities B 26-550 As 'A' for 50-90% of persons being distracted C 1-26 As 'A' for less than 50% of persons being distracted D 0.18-1 10-50% of persons aware of being tested perceive by smell that the Exposure Standard is being reached E <0.18 As 'D' for less than 10% of persons aware of being tested For butane: Odour Threshold Value: 2591 ppm (recognition) Butane in common with other homologues in the straight chain saturated aliphatic hydrocarbon series is not characterised by its toxicity but by its narcosis-inducing effects at high concentrations. The TLV is based on analogy with pentane by comparing their lower explosive limits in air. It is concluded that this limit will protect workers against the significant risk of drowsiness and other narcotic effects. Odour Safety Factor(OSF) OSF=0.22 (n-BUTANE) Odour Threshold Value: 3.3 ppm (detection), 7.6 ppm (recognition) Exposure at or below the recommended isopropanol TLV-TWA and STEL is thought to minimise the potential for inducing narcotic effects or significant irritation of the eyes or upper respiratory tract. It is believed, in the absence of hard evidence, that this limit also provides protection against the development of chronic health effects. The limit is intermediate to that set for ethanol, which is less toxic, and n-propyl alcohol, which is more toxic, than isopropanol For ethylene glycol monobutyl ether (2-butoxyethanol) Odour Threshold Value: 0.10 ppm (detection), 0.35 ppm (recognition) Although rats appear to be more susceptible than other animals anaemia is not uncommon amongst humans following exposure. The TLV reflects the need to maintain exposures below levels found to cause blood changes in experimental animals. It is concluded that this limit will reduce the significant risk of irritation, haematologic effects and other systemic effects observed in humans and animals exposed to higher vapour concentrations. The toxic effects typical of some other glycol ethers (pancytopenia, testis atrophy and teratogenic effects) are not found with this substance. Odour Safety Factor (OSF) OSF=2E2 (2-BUTOXYETHANOL) For propane Odour Safety Factor(OSF) OSF=0.16 (PROPANE) #### 8.2. Exposure controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. a storage areas. # 8.2.1. Appropriate engineering controls Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Speed: | |-----------------------------------------------------------------------------------------------------------------|----------------------------| | aerosols, (released at low velocity into zone of active generation) | 0.5-1 m/s | | direct spray, spray painting in shallow booths, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |------------------------------------------------------------|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### 8.2.2. Personal protection #### Eye and face protection No special equipment for minor exposure i.e. when handling small quantities. OTHERWISE: For potentially moderate or heavy exposures: - Safety glasses with side shields. - NOTE: Contact lenses pose a special hazard; soft lenses may absorb irritants and ALL lenses concentrate them. #### Skin protection See Hand protection below #### ▶ No special equipment needed when handling small quantities. - OTHERWISE: - For potentially moderate exposures: - Wear general protective gloves, eg. light weight rubber gloves. - For potentially heavy exposures: Wear chemical protective gloves, eg. PVC. and safety footwear. - Wear chemical protInsulated gloves: NOTE: Insulated gloves should be loose fitting so that may be removed quickly if liquid is spilled upon them. Insulated gloves are not made to permit hands to be placed in the liquid; they provide only short-term protection from accidental contact with the liquid. #### Body protection See Other protection below # No special equipment needed when handling small quantities. OTHERWISE: # Other protection - Overalls. - ► Skin cleansing cream. - Eyewash unit. - Do not spray on hot surfaces. #### Recommended material(s) #### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: #### Forsberg Clothing Performance Index'. The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: 826 Static Off Antistatic Foaming Spray | Material | СРІ | |-------------------|-----| | NEOPRENE | В | | BUTYL | С | | NAT+NEOPR+NITRILE | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NITRILE | С | | NITRILE+PVC | С | | PE/EVAL/PE | С | | PVA | С | | PVC | С | | SARANEX-23 | С | | VITON | С | #### \* CPI - Chemwatch Performance Index A: Best Selection #### Respiratory protection - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used - B: Satisfactory; may degrade after 4 hours continuous immersion - C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - \* Where the glove is to be used on a short term, casual or infrequent basis, factors such as 'feel' or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. #### 8.2.3. Environmental exposure controls See section 12 # **SECTION 9 Physical and chemical properties** ## 9.1. Information on basic physical and chemical properties | Appearance | Clear | | | |----------------------------------------------|---------------|-----------------------------------------|---------------| | Physical state | Liquified Gas | Relative density (Water = 1) | 1 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | >245 | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | <20.5 | | Initial boiling point and boiling range (°C) | >93 | Molecular weight (g/mol) | Not Available | | Flash point (°C) | >50 | Taste | Not Available | | Evaporation rate | <1 BuAC = 1 | Explosive properties | Not Available | | Flammability | Flammable. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Miscible | pH as a solution (Not<br>Available%) | Not Available | | Vapour density (Air = 1) | >1 | VOC g/L | Not Available | | Nanoform Solubility | Not Available | Nanoform Particle<br>Characteristics | Not Available | | Particle Size | Not Available | | | #### 9.2. Other information Not Available ## **SECTION 10 Stability and reactivity** | 40.4 5 41.5 | | |------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 10.1.Reactivity | See section 7.2 | | 10.2. Chemical stability | <ul> <li>Elevated temperatures.</li> <li>Presence of open flame.</li> <li>Product is considered stable.</li> <li>Hazardous polymerisation will not occur.</li> </ul> | | 10.3. Possibility of hazardous reactions | See section 7.2 | | 10.4. Conditions to avoid | See section 7.2 | | 10.5. Incompatible materials | See section 7.2 | | 10.6. Hazardous decomposition products | See section 5.3 | # **SECTION 11 Toxicological information** #### 11.1. Information on toxicological effects Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. The material is not thought to produce respiratory irritation (as classified by EC Directives using animal models). Nevertheless inhalation, of the material, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress. Common, generalised symptoms associated with toxic gas inhalation include: central nervous system effects such as depression, headache, confusion, dizziness, progressive stupor, coma and seizures; respiratory system complications may include acute pulmonary oedema, dyspnoea, stridor, tachypnoea, bronchospasm, wheezing and other reactive airway symptoms, and respiratory arrest; ▶ cardiovascular effects may include cardiovascular collapse, arrhythmias and cardiac arrest; Inhaled pastrointestinal effects may also be present and may include mucous membrane irritation, nausea and vomiting (sometimes bloody), and abdominal pain. Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure. WARNING: Intentional misuse by concentrating/inhaling contents may be lethal The odour of isopropanol may give some warning of exposure, but odour fatigue may occur. Inhalation of isopropanol may produce irritation of the nose and throat with sneezing, sore throat and runny nose. The effects in animals subject to a single exposure, by inhalation, included inactivity or anaesthesia and histopathological changes in the nasal canal and auditory canal. Not normally a hazard due to physical form of product. Considered an unlikely route of entry in commercial/industrial environments Following ingestion, a single exposure to isopropyl alcohol produced lethargy and non-specific effects such as weight loss and irritation. Ingestion of near-lethal doses of isopropanol produces histopathological changes of the stomach, lungs and kidneys, incoordination, lethargy, Ingestion gastrointestinal tract irritation, and inactivity or anaesthesia. Swallowing 10 ml. of isopropanol may cause serious injury; 100 ml. may be fatal if not promptly treated. The adult single lethal doses is approximately 250 ml. The toxicity of isopropanol is twice that of ethanol and the symptoms of intoxication appear to be similar except for the absence of an initial euphoric effect; gastritis and vomiting are more prominent. Ingestion may cause nausea, vomiting, and diarrhoea. There is evidence that a slight tolerance to isopropanol may be acquired. Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Spray mist may produce discomfort Skin Contact Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Vapourising liquid causes rapid cooling and contact may cause cold burns, frostbite, even through normal gloves. Frozen skin tissues are painless and appear waxy and yellow. Signs and symptoms of frost-bite may include 'pins and needles', paleness followed by numbness, a hardening an stiffening of the skin, a progression of colour changes in the affected area, (first white, then mottled and blue and eventually black; on recovery, red, hot, painful and blistered). 511ipa Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may produce transient discomfort characterised by tearing or conjunctival redness (as with windburn). Direct contact with the eye may not cause irritation because of the extreme volatility of the gas; however concentrated atmospheres may produce Eye irritation after brief exposures. Isopropanol vapour may cause mild eye irritation at 400 ppm. Splashes may cause severe eye irritation, possible corneal burns and eye damage. Eye contact may cause tearing or blurring of vision. Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems Exposure to the material may cause concerns for human fertility, generally on the basis that results in animal studies provide sufficient evidence to cause a strong suspicion of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects. Principal route of occupational exposure to the gas is by inhalation. On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. Long term or repeated ingestion exposure of isopropanol may produce incoordination, lethargy and reduced weight gain. Repeated inhalation exposure to isopropanol may produce narcosis, incoordination and liver degeneration. Animal data show developmental Chronic effects only at exposure levels that produce toxic effects in the adult animals. Isopropanol does not cause genetic damage in bacterial or mammalian cell cultures or in animals There are inconclusive reports of human sensitisation from skin contact with isopropanol. Chronic alcoholics are more tolerant of systemic isopropanol than are persons who do not consume alcohol; alcoholics have survived as much as 500 ml, of 70% isopropanol. Continued voluntary drinking of a 2.5% aqueous solution through two successive generations of rats produced no reproductive effects. NOTE: Commercial isopropanol does not contain 'isopropyl oil'. An excess incidence of sinus and laryngeal cancers in isopropanol production workers has been shown to be caused by the byproduct 'isopropyl oil'. Changes in the production processes now ensure that no byproduct is formed. Production changes include use of dilute sulfuric acid at higher temperatures. TOXICITY IRRITATION 826 Static Off Antistatic **Foaming Spray** Not Available Not Available TOXICITY IRRITATION water Oral (Rat) LD50; >90000 mg/kg<sup>[2]</sup> Not Available | | TOXICITY | | | IRRITATION | |------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|------------------------------------| | iso-butane | Inhalation(Rat) LC50; >13023 ppm4h <sup>[1]</sup> | | | Not Available | | | TOXICITY | | IRRITATION | | | | Dermal (rabbit) LD50: 12800 mg/kg <sup>[2]</sup> | | Eye (rabbit): 10 mg - moder | ate | | isopropanol | Inhalation(Mouse) LC50; 53 mg/L4h <sup>[2]</sup> | | Eye (rabbit): 100 mg - SEVE | ERE | | | Oral (Mouse) LD50; 3600 mg/kg <sup>[2]</sup> | | Eye (rabbit): 100mg/24hr-m | oderate | | | | | Skin (rabbit): 500 mg - mild | | | | TOXICITY | IRRITA | TION | | | | dermal (guinea pig) LD50: 210 mg/kg <sup>[2]</sup> | Eye (rabbit): 100 mg SEVERE | | | | | Inhalation(Rat) LC50; 2.21 mg/l4h <sup>[2]</sup> | Eye (rabbit): 100 mg/24h-moderate | | | | ethylene glycol monobutyl<br>ether | Oral (Rat) LD50; 300 mg/kg <sup>[2]</sup> | Eye: ad | verse effect observed (irritating | g) <sup>[1]</sup> | | | | Skin (ra | abbit): 500 mg, open; mild | | | | | Skin: ac | dverse effect observed (irritating | g) <sup>[1]</sup> | | | | Skin: no | adverse effect observed (not | irritating) <sup>[1]</sup> | | | TOXICITY | | | IRRITATION | | propane | Inhalation(Rat) LC50; >13023 ppm4h <sup>[1]</sup> | | | Not Available | | Legend: | Value obtained from Europe ECHA Registered Subspecified data extracted from RTECS - Register of To. | | | anufacturer's SDS. Unless otherwis | Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. For isopropanol (IPA): Acute toxicity: Isopropanol has a low order of acute toxicity. It is irritating to the eyes, but not to the skin. Very high vapor concentrations are irritating to the eyes, nose, and throat, and prolonged exposure may produce central nervous system depression and narcosis. Human volunteers reported that exposure to 400 ppm isopropanol vapors for 3 to 5 min. caused mild irritation of the eyes, nose and throat. Although isopropanol produced little irritation when tested on the skin of human volunteers, there have been reports of isolated cases of dermal irritation and/or sensitization. The use of isopropanol as a sponge treatment for the control of fever has resulted in cases of intoxication, probably the result of both dermal absorption and inhalation. There have been a number of cases of poisoning reported due to the intentional ingestion of isopropanol, particularly among alcoholics or suicide victims. These ingestions typically result in a comatose condition. Pulmonary difficulty, nausea, vomiting, and headache accompanied by various degrees of central nervous system depression are typical. In the absence of shock, recovery usually occurred. #### ISOPROPANOL Repeat dose studies: The systemic (non-cancer) toxicity of repeated exposure to isopropanol has been evaluated in rats and mice by the inhalation and oral routes. The only adverse effects-in addition to clinical signs identified from these studies were to the kidney. Reproductive toxicity: A recent two-generation reproductive study characterised the reproductive hazard for isopropanol associated with oral gavage exposure. This study found that the only reproductive parameter apparently affected by isopropanol exposure was a statistically significant decrease in male mating index of the F1 males. It is possible that the change in this reproductive parameter was treatment related and significant, although the mechanism of this effect could not be discerned from the results of the study. However, the lack of a significant effect of the female mating index in either generation, the absence of any adverse effect on litter size, and the lack of histopathological findings of the testes of the high-dose males suggest that the observed reduction in male mating index may not be biologically meaningful. Developmental toxicity: The developmental toxicity of isopropanol has been characterized in rat and rabbit developmental toxicity studies. These studies indicate that isopropanol is not a selective developmental hazard. Isopropanol produced developmental toxicity in rats, but not in rabbits. In the rat, the developmental toxicity occurred only at maternally toxic doses and consisted of decreased foetal body weights, but no teratogenicity Genotoxicity: All genotoxicity assays reported for isopropanol have been negative Carcinogenicity: rodent inhalation studies were conduct to evaluate isopropanol for cancer potential. The only tumor rate increase seen was for interstitial (Leydig) cell tumors in the male rats. Interstitial cell tumors of the testis is typically the most frequently observed spontaneous tumor in aged male Fischer 344 rats. These studies demonstrate that isopropanol does not exhibit carcinogenic potential relevant to humans. Furthermore, there was no evidence from this study to indicate the development of carcinomas of the testes in the male rat, nor has isopropanol been found to be genotoxic. Thus, the testicular tumors seen in the isopropanol exposed male rats are considered of no significance in terms of human cancer risk assessment The substance is classified by IARC as Group 3: **NOT** classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. #### ETHYLENE GLYCOL MONOBUTYL ETHER NOTE: Changes in kidney, liver, spleen and lungs are observed in animals exposed to high concentrations of this substance by all routes. \*\* ASCC (NZ) SDS The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. For ethylene glycol monoalkyl ethers and their acetates (EGMAEs): Typical members of this category are ethylene glycol propylene ether (EGPE), ethylene glycol butyl ether (EGBE) and ethylene glycol hexyl ether (EGHE) and their acetates. EGMAEs are substrates for alcohol dehydrogenase isozyme ADH-3, which catalyzes the conversion of their terminal alcohols to aldehydes (which are transient metabolites). Further, rapid conversion of the aldehydes by aldehyde dehydrogenase produces alkoxyacetic acids, which are the predominant urinary metabolites of mono substituted glycol ethers. Acute Toxicity: Oral LD50 values in rats for all category members range from 739 (EGHE) to 3089 mg/kg bw (EGPE), with values increasing with decreasing molecular weight. Four to six hour acute inhalation toxicity studies were conducted for these chemicals in rats at the highest vapour concentrations practically achievable. Values range from LC0 > 85 ppm (508 mg/m3) for EGHE, LC50 > 400ppm (2620 mg/m3) for EGBEA to LC50 > 2132 ppm (9061 mg/m3) for EGPE. No lethality was observed for any of these materials under these conditions. Dermal LD50 values in rabbits range from 435 mg/kg bw (EGBE) to 1500 mg/kg bw (EGBEA). Overall these category members can be considered to be of low to moderate acute toxicity. All category members cause reversible irritation to skin and eyes, with EGBEA less irritating and EGHE more irritating than the other category members. EGPE and EGBE are not sensitisers in experimental animals or humans. Signs of acute toxicity in rats, mice and rabbits are consistent with haemolysis (with the exception of EGHE) and non-specific CNS depression typical of organic solvents in general. Alkoxyacetic acid metabolites, propoxyacetic acid (PAA) and butoxyacetic acid (BAA), are responsible for the red blood cell hemolysis. Signs of toxicity in humans deliberately ingesting cleaning fluids containing 9-22% EGBE are similar to those of rats, with the exception of haemolysis. Although decreased blood haemoglobin and/or haemoglobinuria were observed in some of the human cases, it is not clear if this was due to toxicity from EGPE and EGBE in vitro than those of rats. Repeat dose toxicity: The fact that the NOAEL for repeated dose toxicity of EGBE is less than that of EGPE is consistent with red blood cells being more sensitive to EGBE than EGPE. Blood from mice, rats, hamsters, rabbits and baboons were sensitive to the effects of BAA *in vitro* and displayed similar responses, which included erythrocyte swelling (increased haematocrit and mean corpuscular hemoglobin), followed by hemolysis. Blood from humans, pigs, dogs, cats, and quinea pigs was less sensitive to haemolysis by BAA *in vitro*. Mutagenicity: In the absence and presence of metabolic activation, EGBE tested negative for mutagenicity in Ames tests conducted in *S. typhimurium* strains TA97, TA98, TA100, TA1535 and TA1537 and EGHE tested negative in strains TA98, TA100, TA1535, TA1537 and TA1538. *In vitro* cytogenicity and sister chromatid exchange assays with EGBE and EGHE in Chinese Hamster Ovary Cells with and without metabolic activation and in vivo micronucleus tests with EGBE in rats and mice were negative, indicating that these glycol ethers are not genotoxic. Carcinogenicity: In a 2-year inhalation chronic toxicity and carcinogenicity study with EGBE in rats and mice a significant increase in the incidence of liver haemangiosarcomas was seen in male mice and forestomach tumours in female mice. It was decided that based on the mode Reproductive and developmental toxicity. The results of reproductive and developmental toxicity studies indicate that the glycol ethers in this category are not selectively toxic to the reproductive system or developing fetus, developmental toxicity is secondary to maternal toxicity. The repeated dose toxicity studies in which reproductive organs were examined indicate that the members of this category are not associated with toxicity to reproductive organs (including the testes). Results of the developmental toxicity studies conducted via inhalation exposures during gestation periods on EGPE (rabbits -125, 250, 500 ppm or 531, 1062, or 2125 mg/m3 and rats - 100, 200, 300, 400 ppm or 425, 850, 1275, or 1700 mg/m3), EGBE (rat and rabbit - 25, 50, 100, 200 ppm or 121, 241, 483, or 966 mg/m3), and EGHE (rat and rabbit - 20.8, 41.4, 79.2 ppm or 124, 248, or 474 mg/m3) indicate that the members of the category are not teratogenic. The NOAELs for developmental toxicity are greater than 500 ppm or 2125 mg/m3 (rabbit-EGPE), 100 ppm or 425 mg/m3 (rat-EGPE), 50 ppm or 241 mg/m3 (rat EGBE) and 100 ppm or 483 mg/m3 (rabbit EGBE) and greater than 79.2 ppm or 474 mg/m3 (rat and rabbit-EGHE). Exposure of pregnant rats to ethylene glycol monobutyl ether (2-butoxyethanol) at 100 ppm or rabbits at 200 ppm during organogenesis resulted in maternal toxicity and embryotoxicity including a decreased number of viable implantations per litter. Slight foetoxicity in the form of poorly ossified or unossified skeletal elements was also apparent in rats. Teratogenic effects were not observed in other species. At least one researcher has stated that the reproductive effects were less than that of other monoalkyl ethers of ethylene glycol. Chronic exposure may cause anaemia, macrocytosis, abnormally large red cells and abnormal red cell fragility. of action data available, there was no significant hazard for human carcinogenicity Exposure of male and female rats and mice for 14 weeks to 2 years produced a regenerative haemolytic anaemia and subsequent effects on the haemopoietic system in rats and mice. In addition, 2-butoxyethanol exposures caused increases in the incidence of neoplasms and nonneoplastic lesions (1). The occurrence of the anaemia was concentration-dependent and more pronounced in rats and females. In this study it was proposed that 2-butoxyethanol at concentrations of 500 ppm and greater produced an acute disseminated thrombosis and bone infarction in male and female rats as a result of severe acute haemolysis and reduced deformability of erythrocytes or through anoxic damage to endothelial cells that compromise blood flow. In two-year studies, 2-butoxyethanol continued to affect circulating erythroid mass, inducing a responsive anaemia. Rats showed a marginal increase in the incidence of benign or malignant pheochromocytomas (combined) of the adrenal gland. In mice, 2-butoxyethanol exposure resulted in a concentration dependent increase in the incidence of squamous cell papilloma or carcinoma of the forestomach. It was hypothesised that exposure-induced irritation produced inflammatory and hyperplastic effects in the forestomach and that the neoplasia were associated with a continuation of the injury/ degeneration process. Exposure also produced a concentration -dependent increase in the incidence of haemangiosarcoma of the liver of male mice and hepatocellular carcinoma. 1: NTP Toxicology Program Technical report Series 484, March 2000. For ethylene glycol: Ethylene glycol is quickly and extensively absorbed through the gastrointestinal tract. Limited information suggests that it is also absorbed through the respiratory tract; dermal absorption is apparently slow. Following absorption, ethylene glycol is distributed throughout the body according to total body water. In most mammalian species, including humans, ethylene glycol is initially metabolised by alcohol. dehydrogenase to form glycolaldehyde, which is rapidly converted to glycolic acid and glyoxal by aldehyde oxidase and aldehyde dehydrogenase. These metabolites are oxidised to glyoxylate; glyoxylate may be further metabolised to formic acid, oxalic acid, and glycine. Breakdown of both glycine and formic acid can generate CO2, which is one of the major elimination products of ethylene glycol. In addition to exhaled CO2, ethylene glycol is eliminated in the urine as both the parent compound and glycolic acid. Elimination of ethylene glycol from the plasma in both humans and laboratory animals is rapid after oral exposure; elimination half-lives are in the range of 1-4 hours in most species tested. Respiratory Effects. Respiratory system involvement occurs 12-24 hours after ingestion of sufficient amounts of ethylene glycol and is considered to be part of a second stage in ethylene glycol poisoning The symptoms include hyperventilation, shallow rapid breathing, and generalized pulmonary edema with calcium oxalate crystals occasionally present in the lung parenchyma. Respiratory system involvement appears to be dose-dependent and occurs concomitantly with cardiovascular changes. Pulmonary infiltrates and other changes compatible with adult respiratory distress syndrome (ARDS) may characterise the second stage of ethylene glycol poisoning Pulmonary oedema can be secondary to cardiac failure, ARDS, or aspiration of gastric contents. Symptoms related to acidosis such as hyperpnea and tachypnea are frequently observed; however, major respiratory morbidities such as pulmonary edema and bronchopneumonia are relatively rare and usually only observed with extreme poisoning (e.g., in only 5 of 36 severely poisoned cases). Cardiovascular Effects. Cardiovascular system involvement in humans occurs at the same time as respiratory system involvement, during the second phase of oral ethylene glycol poisoning, which is 12-24 hours after acute exposure. The symptoms of cardiac involvement include tachycardia, ventricular gallop and cardiac enlargement. Ingestion of ethylene glycol may also cause hypertension or hypotension, which may progress to cardiogenic shock. Myocarditis has been observed at autopsy in cases of people who died following acute ingestion of ethylene glycol. As in the case of respiratory effects, cardiovascular involvement occurs with ingestion of relatively high doses of ethylene glycol. Nevertheless, circulatory disturbances are a rare occurrence, having been reported in only 8 of 36 severely poisoned cases. Therefore, it appears that acute exposure to high levels of ethylene glycol can cause serious cardiovascular effects in humans. The effects of a long-term, low-dose exposure are unknown. Gastrointestinal Effects. Nausea, vomiting with or without blood, pyrosis, and abdominal cramping and pain are common early effects of acute ethylene glycol ingestion. Acute effects of ethylene glycol ingestion in one patient included intermittent diarrhea and abdominal pain, which were attributed to mild colonic ischaemia; severe abdominal pain secondary to colonic stricture and perforation developed 3 months after ingestion, and histology of the resected colon showed birefringent crystals highly suggestive of oxalate deposition. Musculoskeletal Effects. Reported musculoskeletal effects in cases of acute ethylene glycol poisoning have included diffuse muscle tenderness and myalgias associated with elevated serum creatinine phosphokinase levels, and myoclonic jerks and tetanic contractions associated with hypocalcaemia. Hepatic Effects. Central hydropic or fatty degeneration, parenchymal necrosis, and calcium oxalate crystals in the liver have been observed at autopsy in cases of people who died following acute ingestion of ethylene glycol. Renal Effects. Adverse renal effects after ethylene glycol ingestion in humans can be observed during the third stage of ethylene glycol toxicity 24-72 hours after acute exposure. The hallmark of renal toxicity is the presence of birefringent calcium oxalate monohydrate crystals deposited in renal tubules and their presence in urine after ingestion of relatively high amounts of ethylene glycol. Other signs of nephrotoxicity can include tubular cell degeneration and necrosis and tubular interstitial inflammation. If untreated, the degree of renal damage caused by high doses of ethylene glycol progresses and leads to haematuria, proteinuria, decreased renal function, oliguria, anuria, and ultimately renal failure. These changes in the kidney are linked to acute tubular necrosis but normal or near normal renal function can return with adequate supportive therapy. Metabolic Effects. One of the major adverse effects following acute oral exposure of humans to ethylene glycol involves metabolic changes. These changes occur as early as 12 hours after ethylene glycol exposure. Ethylene glycol intoxication is accompanied by metabolic acidosis which is manifested by decreased pH and bicarbonate content of serum and other bodily fluids caused by accumulation of excess glycolic acid. Other characteristic metabolic effects of ethylene glycol poisoning are increased serum anion gap, increased osmolal gap, and hypocalcaemia. Serum anion gap is calculated from concentrations of sodium, chloride, and bicarbonate, is normally 12-16 mM, and is typically elevated after ethylene glycol ingestion due to increases in unmeasured metabolite anions (mainly glycolate). Neurological Effects: Adverse neurological reactions are among the first symptoms to appear in humans after ethylene glycol ingestion. These early neurotoxic effects are also the only symptoms attributed to unmetabolised ethylene glycol. Together with metabolic changes, they occur during the period of 30 minutes to 12 hours after exposure and are considered to be part of the first stage in ethylene glycol intoxication. In cases of acute intoxication, in which a large amount of ethylene glycol is ingested over a very short time period, there is a progression of neurological manifestations which, if not treated, may lead to generalized seizures and coma. Ataxia, slurred speech, confusion, and somnolence are common during the initial phase of ethylene glycol intoxication as are irritation, restlessness, and disorientation. Cerebral edema and crystalline deposits of calcium oxalate in the walls of small blood vessels in the brain were found at autopsy in people who died after acute ethylene glycol ingestion. Effects on cranial nerves appear late (generally 5-20 days post-ingestion), are relatively rare, and according to some investigators constitute a fourth, late cerebral phase in ethylene glycol intoxication. Clinical manifestations of the cranial neuropathy commonly involve lower motor neurons of the facial and bulbar nerves and are reversible over many months. Reproductive Effects: Reproductive function after intermediate-duration oral exposure to ethylene glycol has been tested in three multigeneration studies (one in rats and two in mice) and several shorter studies (15-20 days in rats and mice). In these studies, effects on fertility, foetal viability, and male reproductive organs were observed in mice, while the only effect in rats was an increase in gestational duration. Developmental Effects: The developmental toxicity of ethylene glycol has been assessed in several acute-duration studies using mice, rats, and rabbits. Available studies indicate that malformations, especially skeletal malformations occur in both mice and rats exposed during gestation; mice are apparently more sensitive to the developmental effects of ethylene glycol. Other evidence of embyrotoxicity in laboratory animals exposed to ethylene glycol exposure includes reduction in foetal body weight. Cancer: No studies were located regarding cancer effects in humans or animals after dermal exposure to ethylene glycol. Genotoxic Effects: Studies in humans have not addressed the genotoxic effects of ethylene glycol. However, available in vivo and in vitro laboratory studies provide consistently negative genotoxicity results for ethylene glycol. #### **WATER & PROPANE** No significant acute toxicological data identified in literature search #### **ISOPROPANOL & ETHYLENE GLYCOL MONOBUTYL ETHER** The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | × | Reproductivity | × | | Serious Eye Damage/Irritation | × | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: — Data either not available or does not fill the criteria for classification Data available to make classification #### 11.2.1. Endocrine Disruption Properties Not Available #### **SECTION 12 Ecological information** isopropanol EC50 EC50 72h 48h # 12.1. Toxicity | 826 Static Off Antistatic | Endpoint | Test Duration (h | ır) | Species | Value | | Source | | |---------------------------|---------------|--------------------|-------|-------------------------|---------------|----------|------------|--------| | Foaming Spray | Not Available | Not Available | | Not Available | Not Available | | Not Availa | able | | | | | | | | | | | | | Endpoint | Test Duration (h | ır) | Species | Value | | Source | | | water | Not Available | Not Available | | Not Available | Not Available | | Not Availa | able | | | | | | | | | | | | | Endpoint | Test Duration (hr) | Spe | cies | | Value | | Source | | to a Lodonia | EC50(ECx) | 96h | Alga | e or other aquatic plar | nts | 7.71mg/ | I | 2 | | iso-butane | LC50 | 96h | Fish | | | 24.11mg | ı/l | 2 | | | EC50 | 96h | Alga | e or other aquatic plar | nts | 7.71mg/ | I | 2 | | | | | | | | | | | | | | | | | | | | _ | | | Endpoint | Test Duration (hr) | Spec | ies | | Value | | Source | | | EC50(ECx) | 24h | Algae | or other aquatic plan | ts | 0.011mg/ | L | 4 | | isopropanol | LC50 | 96h | Fish | | | 4200mg/l | | 4 | Algae or other aquatic plants Crustacea 1 4 >1000ma/l 7550mg/l | | EC50 | 96h | Algae or other aquatic plants | >1000mg/l | 1 | |--------------------------|-----------|--------------------|-----------------------------------------------------------------------------------------------|-----------|--------| | | | | | | | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC10(ECx) | 48h | Crustacea | 7.2mg/l | 2 | | thylene glycol monobutyl | EC50 | 72h | Algae or other aquatic plants | 623mg/l | 2 | | ether | LC50 | 96h | Fish | 1250mg/l | 2 | | | EC50 | 48h | Crustacea | 164mg/l | 2 | | | EC50 | 96h | Algae or other aquatic plants | 720mg/l | 2 | | | | | | · | | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50(ECx) | 96h | Algae or other aquatic plants | 7.71mg/l | 2 | | propane | LC50 | 96h | Fish | 24.11mg/l | 2 | | | EC50 | 96h | Algae or other aquatic plants | 7.71mg/l | 2 | | Legend: | | | ECHA Registered Substances - Ecotoxicologica<br>DC Aquatic Hazard Assessment Data 6. NITE (Ja | | | Drinking Water Standards: hydrocarbon total: 10 ug/l (UK max.). DO NOT discharge into sewer or waterways. #### 12.2. Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---------------------------------|---------------------------|-----------------------------| | water | LOW | LOW | | iso-butane | HIGH | HIGH | | isopropanol | LOW (Half-life = 14 days) | LOW (Half-life = 3 days) | | ethylene glycol monobutyl ether | LOW (Half-life = 56 days) | LOW (Half-life = 1.37 days) | | propane | LOW | LOW | ## 12.3. Bioaccumulative potential | Ingredient | Bioaccumulation | |---------------------------------|---------------------| | iso-butane | LOW (BCF = 1.97) | | isopropanol | LOW (LogKOW = 0.05) | | ethylene glycol monobutyl ether | LOW (BCF = 2.51) | | propane | LOW (LogKOW = 2.36) | ## 12.4. Mobility in soil | Ingredient | Mobility | |---------------------------------|-------------------| | iso-butane | LOW (KOC = 35.04) | | isopropanol | HIGH (KOC = 1.06) | | ethylene glycol monobutyl ether | HIGH (KOC = 1) | | propane | LOW (KOC = 23.74) | # 12.5. Results of PBT and vPvB assessment | | Р | В | Т | |-------------------------|---------------|---------------|---------------| | Relevant available data | Not Available | Not Available | Not Available | | PBT | × | × | × | | vPvB | × | × | × | | PBT Criteria fulfilled? | | | No | | vPvB | | | No | # 12.6. Endocrine Disruption Properties Not Available #### 12.7. Other adverse effects Not Available ## **SECTION 13 Disposal considerations** ## 13.1. Waste treatment methods Product / Packaging disposal Consult State Land Waste Management Authority for disposal. Discharge contents of damaged aerosol cans at an approved site. Continued... | | <ul> <li>Allow small quantities to evaporate.</li> <li>DO NOT incinerate or puncture aerosol cans.</li> <li>Bury residues and emptied aerosol cans at an approved site.</li> </ul> | |-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Waste treatment options | Not Available | | Sewage disposal options | Not Available | # **SECTION 14 Transport information** #### **Labels Required** # Land transport (ADR-RID) | Edita transport (ADIC 10D) | | | | | |-------------------------------|--------------------------------|-----------------|-----------------|--| | 14.1. UN number | 1950 | | | | | 14.2. UN proper shipping name | AEROSOLS | | | | | 14.3. Transport hazard | Class | 2.2 | | | | class(es) | Subrisk | Not Applicable | | | | 14.4. Packing group | Not Applicable | | | | | 14.5. Environmental hazard | Not Applicable | | | | | | Hazard identification (Kemler) | | Not Applicable | | | | Classifica | tion code | 5A | | | 14.6. Special precautions for | Hazard Label | | 2.2 | | | user | Special provisions | | 190 327 344 625 | | | | Limited qu | uantity | 1 L | | | | Tunnel Re | estriction Code | 3 (E) | | # Air transport (ICAO-IATA / DGR) | 14.1. UN number | 1950 | | | | |------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------|--| | 14.2. UN proper shipping name | Aerosols, non-flammable; Aerosols, non-flammable (containing biological products or a medicinal preparation which will be deteriorated by a heat test) | | | | | 14.3. Transport hazard class(es) | ICAO/IATA Class | 2.2 | | | | | ICAO / IATA Subrisk | Not Applicable | | | | | ERG Code | 2L | | | | 14.4. Packing group | Not Applicable | | | | | 14.5. Environmental hazard | Not Applicable | | | | | 14.6. Special precautions for user | Special provisions | | A98 A145 A167 A802 | | | | Cargo Only Packing Instructions | | 203 | | | | Cargo Only Maximum Qty / Pack | | 150 kg | | | | Passenger and Cargo Packing Instructions | | 203 | | | | Passenger and Cargo Maximum Qty / Pack | | 75 kg | | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y203 | | | | Passenger and Cargo Limited Maximum Qty / Pack | | 30 kg G | | # Sea transport (IMDG-Code / GGVSee) | 14.1. UN number | 1950 | | |------------------------------------|--------------------------------------------------|---------------------------------------------------| | 14.2. UN proper shipping name | AEROSOLS | | | 14.3. Transport hazard class(es) | IMDG Class 2.2 IMDG Subrisk No | ot Applicable | | 14.4. Packing group | Not Applicable | | | 14.5. Environmental hazard | Not Applicable | | | 14.6. Special precautions for user | EMS Number Special provisions Limited Quantities | F-D, S-U<br>63 190 277 327 344 381 959<br>1000 ml | #### Inland waterways transport (ADN) | 14.1. UN number | 1950 | | | |------------------------------------|---------------------|--------------------|--| | 14.2. UN proper shipping name | AEROSOLS | | | | 14.3. Transport hazard class(es) | 2.2 Not Applicable | | | | 14.4. Packing group | Not Applicable | | | | 14.5. Environmental hazard | Not Applicable | | | | | Classification code | 5A | | | | Special provisions | 190; 327; 344; 625 | | | 14.6. Special precautions for user | Limited quantity | 1 L | | | 400. | Equipment required | PP | | | | Fire cones number | 0 | | #### 14.7. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### 14.8. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |---------------------------------|---------------| | water | Not Available | | iso-butane | Not Available | | isopropanol | Not Available | | ethylene glycol monobutyl ether | Not Available | | propane | Not Available | #### 14.9. Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |---------------------------------|---------------| | water | Not Available | | iso-butane | Not Available | | isopropanol | Not Available | | ethylene glycol monobutyl ether | Not Available | | propane | Not Available | #### **SECTION 15 Regulatory information** #### 15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture # water is found on the following regulatory lists Europe EC Inventory European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) #### iso-butane is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles EU REACH Regulation (EC) No 1907/2006 - Annex XVII (Appendix 1) Carcinogens: Category 1 A EU REACH Regulation (EC) No 1907/2006 - Annex XVII (Appendix 4) Germ cell mutagens: Category 1 B #### isopropanol is found on the following regulatory lists EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles Europe EC Inventory European Union - European Inventory of Existing Commercial Chemical Substances (FINECS) # ethylene glycol monobutyl ether is found on the following regulatory lists EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs) Europe EC Inventory European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) # propane is found on the following regulatory lists EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles Europe EC Inventory # Europe EC Inventory European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2020/878; Regulation (EC) No 1272/2008 as updated through ATPs. #### 15.2. Chemical safety assessment No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier. #### **National Inventory Status** | National Inventory | Status | | |----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | Australia - AIIC / Australia<br>Non-Industrial Use | Yes | | | Canada - DSL | Yes | | | Canada - NDSL | No (water; iso-butane; isopropanol; ethylene glycol monobutyl ether; propane) | | | China - IECSC | Yes | | | Europe - EINEC / ELINCS / NLP | Yes | | | Japan - ENCS | Yes | | | Korea - KECI | Yes | | | New Zealand - NZIoC | Yes | | | Philippines - PICCS | Yes | | | USA - TSCA | Yes | | | Taiwan - TCSI | Yes | | | Mexico - INSQ | Yes | | | Vietnam - NCI | Yes | | | Russia - FBEPH | Yes | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | | #### **SECTION 16 Other information** | Revision Date | 30/03/2022 | |---------------|------------| | Initial Date | 03/06/2017 | #### Full text Risk and Hazard codes | H220 | Extremely flammable gas. | |------|-----------------------------------------------------| | H225 | Highly flammable liquid and vapour. | | H280 | Contains gas under pressure; may explode if heated. | | H302 | Harmful if swallowed. | | H312 | Harmful in contact with skin. | | H315 | Causes skin irritation. | | H319 | Causes serious eye irritation. | | H332 | Harmful if inhaled. | | H336 | May cause drowsiness or dizziness. | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards: EN 166 Personal eye-protection EN 340 Protective clothing EN 374 Protective gloves against chemicals and micro-organisms EN 13832 Footwear protecting against chemicals EN 133 Respiratory protective devices ## **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit $_{\! \circ}$ IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substances Inventory TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances #### **Reason For Change** A-2.00 - Added UFI number and modifications to the safety data sheet